首页> 外文OA文献 >Eigenspace-Based Minimum Variance Adaptive Beamformer Combined with Delay Multiply and Sum: Experimental Study
【2h】

Eigenspace-Based Minimum Variance Adaptive Beamformer Combined with Delay Multiply and Sum: Experimental Study

机译:基于特征空间的最小方差自适应波束形成器   延迟乘法和求和:实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Delay and sum (DAS) is the most common beamforming algorithm in linear-arrayphotoacoustic imaging (PAI) as a result of its simple implementation. However,it leads to a low resolution and high sidelobes. Delay multiply and sum (DMAS)was used to address the incapabilities of DAS, providing a higher imagequality. However, the resolution improvement is not well enough compared toeigenspace-based minimum variance (EIBMV). In this paper, the EIBMV beamformerhas been combined with DMAS algebra, called EIBMV-DMAS, using the expansion ofDMAS algorithm. The proposed method is used as the reconstruction algorithm inlinear-array PAI. EIBMV-DMAS is experimentally evaluated where the quantitativeand qualitative results show that it outperforms DAS, DMAS and EIBMV. Theproposed method degrades the sidelobes for about 365 %, 221 % and 40 %,compared to DAS, DMAS and EIBMV, respectively. Moreover, EIBMV-DMAS improvesthe SNR about 158 %, 63 % and 20 %, respectively.
机译:延迟与和(DAS)是线性阵列光声成像(PAI)中最常用的波束形成算法,这是因为其实现简单。然而,这导致了低分辨率和高旁瓣。延迟乘法和求和(DMAS)用于解决DAS的功能不足,从而提供更高的图像质量。但是,与基于特征空间的最小方差(EIBMV)相比,分辨率的改进还不够好。本文通过扩展DMAS算法,将EIBMV波束形成器与DMAS代数EIBMV-DMAS结合在一起。将该方法作为线性阵列PAI的重建算法。对EIBMV-DMAS进行了实验评估,定量和定性结果表明它优于DAS,DMAS和EIBMV。与DAS,DMAS和EIBMV相比,所提出的方法分别将旁瓣降级了365%,221%和40%。此外,EIBMV-DMAS分别将SNR提高了约158%,63%和20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号